

LANSA Newsletter September 2006 page 1
© LANSA 2006

Newsletter
September 2006

http://www.lansa.com

�

RAMP from LANSA

RAMP goes way beyond conventional refacing and screen scraping technologies. It is an
entirely new approach to iSeries application modernization and innovation.

LANSA's Rapid Application Modernization Process lets you run refaced legacy iSeries
(AS/400) applications inside a LANSA Application Framework to give both modernized
application navigation and a staged path for system replacement or deployment to other
platforms.

Give existing RPG and COBOL applications a Windows rich-client or Web browser user
interface with enhanced navigation in weeks or months rather than years – with no change to
iSeries (AS/400) server logic.
Only RAMP lets you integrate reanimated 5250 screens with new GUI components that can
also run on iSeries, Windows, UNIX or Linux. Moving your applications into the LANSA
Application Framework lets you use the full power of the LANSA 2005 development suite
and new technologies like XML, SOA and Web services.

RAMP is the Fastest Way to Modernize iSeries Applications
Rapid Application Modernization Process or RAMP is a new offering from LANSA that
delivers both today’s “must-have” tactical enhancements and a smooth path to long-term
modernization of iSeries applications using LANSA’s rapid prototyping and intelligent
refacing tools.

RAMP provides a development and execution Application Framework with a Microsoft
Outlook-style “look-and-feel.” You can “mix-and-match” your existing iSeries 5250 screens
and batch-based jobs with Visual LANSA components that can execute against iSeries,
Windows, UNIX or Linux servers in a Web browser or as Windows rich-client applications.

RAMP goes way beyond conventional refacing technologies that only provide presentation
enhancements. RAMP generates Navigation, Filter and Organization components for
deployment on your choice of platforms, with your choice of user interface.

In
This
Issue �

RAMP from LANSA page 1 Break on Condition for Debug ging page 12
Upgrade problem setup 11.0 page 5 Explorer Example Application page 17
Help options in CU3 page 8 LANSA iSeries 11.3 CD’s page 21
WEB_MAP command in CU3 page 9 Imbedded Interface Po ints page 22
MCH3402 error in RDMLX functions page 10 RRNO on Lo gicals page 25
LANSA Customer day Amsterdam page 11 Open Query Fil e not in RDMLX page 26

LANSA Newsletter September 2006 page 2
© LANSA 2006

From Green Screen to GUI in Weeks

Modernize at Your Own Pace
Short-term Imperatives Versus Long-term Plans

· The RAMP approach recognizes that you must address the tactical issues of
functionality shortcomings in existing applications while your organization works on its
modernization plans. Business must continue, it can’t stop while your systems are
modernized.

· RAMP meets this challenge by delivering tactical solutions in parallel with long-term

strategic modernization using the same development tools.

· You can Web-enable parts of your application to provide a self-service portal,
consume and publish Web services or deliver new functionality to meet business
requirements — all within the same Application Framework that serves as a platform
for full modernization.

LANSA Newsletter September 2006 page 3
© LANSA 2006

· With RAMP, you avoid duplication of effort and throw-away quick fixes that are a step

sideways at best.

· With LANSA, adding product functionality or a new “face” to existing applications can
be a step forward to full modernization.

Stage 1: Creation of a True Modernization Framework

· This step defines your modernization goals and rollout plan in a very short time, in a
practical and pragmatic way.

· Using LANSA’s Instant Prototyping Assistant, you develop an unencumbered vision

of your modernized application and plan what does and does not require significant
reengineering.

· Most importantly, the result is a fully working Application Framework that is not

thrown away — it evolves through Stages 2 and 3 of your modernization journey.

Stage 2: Navigation, Integration and Initial Enrichment

· Stage 2 uses LANSA’s Application Navigation Assistant to reanimate existing 5250
programs and snap them into the Application Framework produced in Stage 1.

· RAMP lets you “mix-and-match” your existing iSeries 5250 screens and batch jobs

with Visual LANSA components that can execute against iSeries, Windows, UNIX or
Linux servers in a Web browser or as Windows rich-client applications — all in the
same Application Framework.

· RAMP raises the modernization bar to a new level and delivers much more than

conventional refacing technologies that simply provide Presentation enhancements.
RAMP adds a “touch of magic” and creates Navigation, Filter and Organization
components for iSeries, Windows, UNIX or Linux.

LANSA Newsletter September 2006 page 4
© LANSA 2006

Stage 3: Ongoing Reengineering and Enrichment

· This stage builds on the Application Framework developed in Stages 1 and 2. You
decide which programs will be enriched and enhanced and the depth of
modernization.

· If server platform independence is a vital component of your overall modernization
strategy, then applications with RPG/DDS dependencies can be modernized with the
full power of the LANSA 2005 development suite.

· At your own pace, you can progressively redevelop your old 5250-based application
into a modern repository-based LANSA application that supports modern techniques
such as Web services and SOA.

· The final result is a fully modernized application, built with your vision, to your plan
and ready for your platform of choice.

RAMP Raises the iSeries Application
Modernization Bar to a New Level

LANSA Newsletter September 2006 page 5
© LANSA 2006

Cannot get past Existing LANSA
Communications Directory prompt
in Setup during upgrade to 11.0

Description
During an upgrade from LANSA V10.0 to V11.0, one of the install screens will prompt for the
Existing LANSA Communications Directory. For most installs this value will be pre-filled and
does not need to be changed. However in some cases no default value will appear for this
prompt. Furthermore, even if the correct value is entered the Install will reject it and the
install cannot continue.

Cause
This is caused by the communications library path being blank in the data areas that the
install uses. The install cannot complete until the data areas contain the correct value. The
steps below should be followed to update the communications entry which will allow the
install to complete.

Solution
To correct the data areas, you should use following steps to ensure that the data is updated
correctly.

�� From the command prompt, run LANSA Configure�
�

�

��

LANSA Newsletter September 2006 page 6
© LANSA 2006

2. From the resulting menu choose COMMS_EXTENSIONS

3. Then from the menu choose COMMS_DEFINITIONS

LANSA Newsletter September 2006 page 7
© LANSA 2006

4. Press F21 to enter change mode and enter the correct communications routing table

detail. For example, if LANSA is installed to the default location, you might enter
"/etc/dc_pgmlib/lroute.dat" (note this may vary and you are advised to determine which
directory is used in your configuration before continuing).

5. Press enter to accept and then exit the LANSA Configure program.

6. If you display the data area lcoa01 you should see the change has already taken place.

The above steps should also create the lroute.dat table in the /etc/dc_pgmlib folder.
After logging off and signing back on again as QSECOFR, you should be able to run the
upgrade without any further problems.

LANSA Newsletter September 2006 page 8
© LANSA 2006

Context sensitive features including HELP
have vastly improved for the IDE for CU3

As can be seen above there are
many more options available to the
user from the Editor now. The F2
feature help has been vastly
improved.

�

It is now very much
context sensitive;
put the cursor on a
section of your
code and press F2,
or right click on any
bit of code and the
feature help will
display the help
contents for that
property,
component,
method, etc.

LANSA Newsletter September 2006 page 9
© LANSA 2006

Using WEB_MAP FOR(*NONE) and
WEB_MAP FOR(*INPUT) in WAMs

The WEB_MAP command is used to declare the field and list data to be mapped between
the Presentation Layer and your Webroutines. The FOR parameter defines the direction of
these mappings.

Fields and lists declared with WEB_MAP FOR(*NONE) defines that their values are not to
be mapped in or out of the Webroutine. This attribute is used for session state data where
the value is only used in application logic.

Fields and lists declared with WEB_MAP FOR(*INPUT) defines that their values are only to
be mapped in to the Webroutine and are not to be mapped out of the Webroutine.

Fields and lists declared with WEB_MAP FOR(*OUTPUT) defines that their values are not to
be mapped in to the Webroutine and are only to be mapped out of the Webroutine.

Fields and lists declared with WEB_MAP FOR(*BOTH) defines that their values are to be
mapped both in and out of the Webroutine.

Prior to V11.3 , the *NONE and *INPUT values of the FOR parameter were not enforced
correctly so that fields and lists declared with these FOR parameters had their data values
mapped out of the Webroutine.

Once V11.3 is applied, the FOR parameter values are strictly enforced so that only fields
and lists with WEB_MAP FOR(*OUTPUT) and FOR(*BOTH) have their data values mapped
out of the Webroutine so that they are available to the Presentation Layer. This may have an
impact on your existing WAM applications if you have declared fields and/or lists with
WEB_MAP FOR(*NONE) or WEB_MAP FOR(*INPUT) but the values are required to be
mapped out from your Webroutines.

Refer to the Web Application Modules (WAMs) Guide section 1.4.2 for a further explanation
of the WEB_MAP command.

LANSA Newsletter September 2006 page 10
© LANSA 2006

How to avoid MCH3402 errors when
repeatedly running RDMLX
functions on iSeries after checking
and compile

Situation
You are writing and testing an iSeries application which contains RDMLX functions which are
run and tested on an iSeries.

This will involve writing/amending the RDMLX function in Visual LANSA, checking in the
RDMLX function to the iSeries, compiling on iSeries, then testing on iSeries. This will be
repeated several times.

Attempting to run an RDMLX function from the iSeries LANSA menus when the RDMLX
function has been changed will result in an MCH3402 error message ("Tries to refer to all or
part of an object that no longer exists") for the function. This can be avoided by exiting from
LANSA between executions of the RDMLX function.

A recommended way to run the function is by using the command
LANSA RUN PROCESS(……….) FUNCTION(…….) PARTITION(…)
or
LANSA X_ RUN PROCESS(……….) FUNCTION(…….) PARTITION(…)

Please also see the following Link on how JSMDirect in LANSA Integrator is impacted.
www.lansa.com/support/notes/p0286.htm

LANSA Newsletter September 2006 page 11
© LANSA 2006

LANSA Customer day

10 October - Beurs van Berlage, Amsterdam

LANSA will organize a customer day at Tuesday 10 October.

We invite you all for this day, so please put this day into your agenda. We will send you a
complete agenda later on this month.

Guest speaker during this day Diane Joester , LANSA Senior Architect from Sydney
Australia.

Martin Fincham, General Manager EMEA, will also be available during this day:
"LANSA is not just the name of a company or a product. LANSA is a community, a feeling of
fellowship that results from sharing common attitudes, interests, and goals. The team at
LANSA may be the nucleus of this community but we are not its only members. Our
partners, customers, developers and end-users form a virtuous circle that strengthens the
more everyone unites. Show your support for the LANSA community by attending our User
Day; and don’t just send the person that always attends events and conferences! Instead
consider the value to your company, and the community, of sending a mixed group that
represents the different roles and functions in your organisation - there will surely be
something on the agenda for everyone.”

LANSA Newsletter September 2006 page 12
© LANSA 2006

Breakpoint Property Break On
Condition for Debugging

The Visual LANSA development environment has a feature which you are probably not
aware of!

· Start the LANSA IDE

· Select the Function , or component to Debug.

· Set breakpoint (F9) on line with counter

· Select Debug, Windows, Breakpoints

· Select Debug, Windows, Variables

You can see the Breakpoint in the source shown in Red background color, the Variables-
panel at the left side , and the Breakpoint-panel at the bottom.

LANSA Newsletter September 2006 page 13
© LANSA 2006

After running it the first time, the variables are shown:

Select the field to use with a condition , i.e. STD_NUM , and right click on it.

LANSA Newsletter September 2006 page 14
© LANSA 2006

Select the option “Break on value Condition” and this small window will appear:

Here you can specify the number of times the program should pass this line before halting at
this breakpoint, but you can also…….

LANSA Newsletter September 2006 page 15
© LANSA 2006

….. select the second tabsheet, “Value”, and define the condition when to halt at this line:

After specification , you can examine all the special breakpoint settings, using “Breakpoint
Toolbar” ,in the lower pane tabsheet “Breakpoints” , for the details click on the button
“Breakpoint properties”:

Start debug , press F5 and you can see the execution will stop after the number of cycles
that you have specified (Breakpoint Properties - sheet 1) , or when the condition is true
(Breakpoint Properties - sheet 2).

LANSA Newsletter September 2006 page 16
© LANSA 2006

The value of the field #STD_NUM is 5 (See Top-left-side pane – Variables sheet).

When you press F5 again the function will continue onto the next breakpoint.

LANSA Newsletter September 2006 page 17
© LANSA 2006

Explorer Sample Application

Use the explorer component to view files and directories either on local hard disks or across
the network.

The events of the explorer component pass the file name, path and path type as parameters.
The following sample code assigns this information to LANSA fields as an item gets the
focus in an explorer component:

EVTROUTINE HANDLING(#EXPLORER.ItemGotFocus) Path(#PathName)
PathType(#PathType) Name(#FileName)

 Change #Std_Descs #PathType.Value

 Change #Std_Desc #PathName.Value

 Change #Std_Texts #FileName.Value

ENDROUTINE

If you want to use two explorer components, one for showing directories and paths and one
for showing the files in them (similar to Windows Explorer), you can implement the
communication between the two components using the NotifyComponent property of the first
explorer component.

To see how the explorer component works, copy the following code and paste it into a form,
compile and execute it.

Source:
Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Caption('Explorer Sample Application') Clientheight(439)
Clientwidth(628) Height(473) Left(404) Top(141) Width(636)

Define_Com Class(#PRIM_DCBX) Name(#DCBX_1) Displayposition(1) Fileincludemask('"*.*"')
Filename('Desktop') Height(145) Left(16) Parent(#COM_OWNER) Tabposition(1) Tabstop(False)
Top(24) Width(265)
Define_Com Class(#PRIM_DCBX) Name(#DCBX_2) Displayposition(2) Displaystyle(GeneralListView)
Fileincludemask('"*.*"') Filename('Desktop') Height(145) Left(288) Parent(#COM_OWNER)
Tabposition(2) Tabstop(False) Top(24) Width(329)
Define_Com Class(#PRIM_CMBX) Name(#CMBX_1) Componentversion(1) Displayposition(3)
Height(18) Left(136) Parent(#COM_OWNER) Showselection(False) Showselectionhilight(False)
Tabposition(3) Top(288) Width(113)
Define_Com Class(#PRIM_LABL) Name(#LABL_1) Caption('Explorer 1 DisplayStyle:')
Displayposition(4) Height(20) Left(16) Parent(#COM_OWNER) Tabposition(4) Tabstop(False)
Top(288) Width(113)
Define_Com Class(#PRIM_CBCL) Name(#CBCL_1) Displayposition(1) Parent(#CMBX_1)
Source(#STD_TEXT)
Define_Com Class(#PRIM_LABL) Name(#LABL_2) Caption('Explorer 1') Displayposition(5) Height(17)
Left(16) Parent(#COM_OWNER) Tabposition(5) Tabstop(False) Top(8) Width(98)
Define_Com Class(#PRIM_LABL) Name(#LABL_3) Caption('Explorer 2') Displayposition(6) Height(17)
Left(288) Parent(#COM_OWNER) Tabposition(6) Tabstop(False) Top(8) Width(98)
Define_Com Class(#PRIM_CKBX) Name(#CKBX_1) Caption('Link with Explorer 2 (NotifyComponent)')
Displayposition(7) Height(17) Left(16) Parent(#COM_OWNER) Tabposition(7) Top(184) Width(233)

LANSA Newsletter September 2006 page 18
© LANSA 2006

Define_Com Class(#PRIM_CKBX) Name(#CKBX_2) Caption('Apply Windows security settings
(ApplySecurity)') Displayposition(8) Height(17) Left(8) Parent(#COM_OWNER) Tabposition(8)
Top(416) Width(257)
Define_Com Class(#STD_NUM.Visual) Name(#STD_NUM) Caption('DriveSpaceFree:')
Displayposition(9) Height(19) Labeltype(Caption) Left(24) Marginleft(100) Parent(#COM_OWNER)
Tabposition(9) Top(224) Usepicklist(False) Width(169)
Define_Com Class(#PRIM_LABL) Name(#LABL_4) Caption('MB') Displayposition(10) Height(17)
Left(200) Parent(#COM_OWNER) Tabposition(10) Tabstop(False) Top(224) Width(25)
Define_Com Class(#STD_NUM.Visual) Name(#STD_NUM_1) Caption('DriveSpaceTotal:')
Displayposition(11) Height(19) Labeltype(Caption) Left(24) Marginleft(100) Parent(#COM_OWNER)
Tabposition(11) Top(248) Usepicklist(False) Width(169)
Define_Com Class(#PRIM_LABL) Name(#LABL_5) Caption('MB') Displayposition(12) Height(17)
Left(200) Parent(#COM_OWNER) Tabposition(12) Tabstop(False) Top(248) Width(25)
Define_Com Class(#STD_TEXTS.Visual) Name(#STD_TEXTS) Caption('Filter by name and extension
(FileIncludeMask):') Displayposition(13) Enabled(False) Height(19) Labeltype(Caption) Left(296)
Marginleft(225) Parent(#COM_OWNER) Tabposition(13) Top(184) Usepicklist(False) Width(321)
Define_Com Class(#STD_DESC.Visual) Name(#STD_DESC) Caption('Selected file:')
Displayposition(14) Enabled(False) Height(19) Labeltype(Caption) Left(296) Marginleft(65)
Parent(#COM_OWNER) Tabposition(14) Top(208) Usepicklist(False) Width(321)
Define_Com Class(#STD_DESCL.Visual) Name(#STD_DESCL) Caption('Path type:')
Displayposition(15) Height(19) Labeltype(Caption) Left(16) Marginleft(60) Parent(#COM_OWNER)
Tabposition(15) Top(312) Usepicklist(False) Width(233)
Define_Com Class(#PRIM_GPBX) Name(#GPBX_1) Displayposition(16) Height(73) Left(8)
Parent(#COM_OWNER) Tabposition(16) Tabstop(False) Top(208) Width(241)
Define_Com Class(#PRIM_GPBX) Name(#GPBX_2) Displayposition(17) Height(65) Left(8)
Parent(#COM_OWNER) Tabposition(17) Tabstop(False) Top(344) Width(241)
Define_Com Class(#STD_INST2.Visual) Name(#STD_INST2) Caption('Root path:') Displayposition(1)
Height(19) Labeltype(Caption) Left(8) Marginleft(70) Parent(#GPBX_2) Tabposition(1) Top(16)
Usepicklist(False) Width(220)
Define_Com Class(#PRIM_CMBX) Name(#CMBX_3) Componentversion(1) Displayposition(2)
Height(18) Left(80) Parent(#GPBX_2) Showselection(False) Showselectionhilight(False)
Tabposition(2) Top(40) Width(152)
Define_Com Class(#PRIM_LABL) Name(#LABL_7) Caption('Visible path:') Displayposition(3)
Height(17) Left(8) Parent(#GPBX_2) Tabposition(3) Tabstop(False) Top(42) Width(98)
Define_Com Class(#PRIM_CBCL) Name(#CBCL_3) Displayposition(1) Parent(#CMBX_3)
Source(#STD_INSTR)

Evtroutine Handling(#com_owner.Initialize)
* Fill Explorer Displaystyles
Change Field(#std_text) To('''DirectoryListBox''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''DirectoryListView''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''DirectoryTreeView''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''DriveComboBox''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''FileListBox''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''FileListView''')
Add_Entry To_List(#CMBX_1)
Change Field(#std_text) To('''GeneralListView''')
Add_Entry To_List(#CMBX_1)
Get_Entry Number(4) From_List(#CMBX_1)
Set Com(#CMBX_1.CURRENTITEM) FOCUS(TRUE)

* Fill VisiblePaths
Change Field(#std_instr) To('''LocalDrivesOnly''')
Add_Entry To_List(#CMBX_3)

Change Field(#std_instr) To('''RootPath''')

LANSA Newsletter September 2006 page 19
© LANSA 2006

Add_Entry To_List(#CMBX_3)
Change Field(#std_instr) To('''Unrestricted''')
Add_Entry To_List(#CMBX_3)
Get_Entry Number(3) From_List(#CMBX_3)
Set Com(#CMBX_3.CURRENTITEM) FOCUS(TRUE)
Endroutine

* Set DisplayStyle for Explorer 1
Evtroutine Handling(#CMBX_1.ItemGotSelection) Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
Set Com(#DCBX_1) DISPLAYSTYLE(#cmbx_1.text)
Endroutine

* Set VisiblePath for Explorer 1
Evtroutine Handling(#CMBX_3.ItemGotSelection) Options(*NOCLEARMESSAGES
*NOCLEARERRORS)
Set Com(#DCBX_1) VISIBLEPATH(#cmbx_3.text)
Endroutine

* Specify NotifyComponent Property for Explorer 1
Evtroutine Handling(#CKBX_1.Click)
If Cond('#ckbx_1.ButtonState *eq Checked')
Set Com(#DCBX_1) NOTIFYCOMPONENT(#DCBX_2)
Set Com(#STD_DESC #STD_TEXTS) ENABLED(True)
Else
Set Com(#DCBX_1) NOTIFYCOMPONENT(*null)
Set Com(#STD_DESC #STD_TEXTS) ENABLED(False)
Endif
Endroutine

* Set the ApplySecurity property for Explorer 1 and Explorer 2
Evtroutine Handling(#CKBX_2.Click)
If Cond('#ckbx_1.ButtonState *eq Checked')
Set Com(#DCBX_1 #DCBX_2) APPLYSECURITY(True)
Else
Set Com(#DCBX_1 #DCBX_2) APPLYSECURITY(False)
Endif
Endroutine

* When a new path is selected, get the total and available space on the drive and the path type
Evtroutine Handling(#DCBX_1.PathChanged) Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Change Field(#std_num) To(#DCBX_1.DriveSpaceFree)
Change Field(#std_num_1) To(#DCBX_1.DriveSpaceTotal)
Change Field(#std_descl) To(#DCBX_1.PathType)
Endroutine

* Set the IncludeMask for Explorer 2
Evtroutine Handling(#STD_TEXTS.Changed) Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Set Com(#DCBX_2) FILEINCLUDEMASK(#std_texts)
Endroutine

* Get the file name selected in Explorer 2

Evtroutine Handling(#DCBX_2.ItemGotFocus) Options(*NOCLEARMESSAGES *NOCLEARERRORS)

LANSA Newsletter September 2006 page 20
© LANSA 2006

Change Field(#std_desc) To(#DCBX_2.FileName)
Endroutine

* Get the RootPath name
Evtroutine Handling(#STD_INST2.Changed) Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Set Com(#DCBX_1) ROOTPATH(#std_inst2.value)
Endroutine
End_Com

LANSA Newsletter September 2006 page 21
© LANSA 2006

How to view the contents of the 2
LANSA iSeries 11.3 CDs

Prior to V11.3, LANSA for the iSeries software has been contained within 1 CD. Now in
version 11.3 LANSA iSeries spans over 2 CD’s. The contents of the second CD includes a
set of standard imports. When installing or upgrading LANSA for iSeries 11.3 you will
automatically be prompted to insert the second CD. This will typically occur when the install
or upgrade is performing the partition initializations.

To view a list of the contents of the iSeries CD’s you can perform the following:

1. Put the iSeries CD1 of 2 in a Windows drive, the auto-load will then load the index
page

2. Select the “LANSA for iSeries install” on the main menu
3. In the left menu, select Additional Information and then iSeries CD. This lists the

contents of the 2 iSeries CDs

LANSA Newsletter September 2006 page 22
© LANSA 2006

Imbedded Interface Points
(IIPs) VLF
(Thanks to Jack Moerman from West Brabantse Delta, the Netherlands)

The Visual LANSA Framework is shipped with a large number of imbedded interface points
(IIPs). IIPs are places at which externally exposed code is invoked to perform specific
internal (or imbedded) logic while the Framework is executing.

For example, in Windows applications there is an IIP method named avConnectFiles that
defines how files are to be connected up to a server system by the Framework.

This standard shipped IIP version does this:
Mthroutine avConnectFiles options(*Redefine)
* ==> Define_map *input #std_obj #UserProfile
* ==> Define_map *input #vf_elnum #DftBlockSize
* ==> Define_map *input #vf_elnum #DftMaxRecSel

USE BUILTIN(CONNECT_FILE) WITH_ARGS('*' *SSERVER_SSN #DftBlockSize.Value
 #DftMaxRecSel.Value)
Endroutine

If you want you can modify this shipped IIP logic to do something different for your
Framework.
In Windows applications the IIPs are defined as methods in the shipped component
UF_SYSTM.
In Web browser applications the IIPs are defined as RDML functions in the shipped process
UF_SYSBR.

If you want to learn more about IIPs then a good place to start is by looking at the source
code shipped in component UF_SYSTM (for Windows applications) and in the functions
contained in the process UF_SYSBR (for Web browser applications).

West Brabantse Delta has iSeries 5250 LANSA applications and Windows applications
created in LANSA’s Visual LANSA Framework (it uses LANSA SuperServer to use the
iSeries file data). When an end user starts an application in the VLF, they want to use
another librarylist then when the same user starts a 5250 application on the iSeries.

They use the Imbedded Interface Point technique of the VLF to handle this.

LANSA Newsletter September 2006 page 23
© LANSA 2006

Jack Moerman:

ALGLIBL is a function that handles the setting of the libarylist. In our development partition
we want to use a separate data set for each of our developers, but they all make use of the
same file definitions.

You can expand the X_RUN.EXE command with the UDEF parameter to complete this. It
makes the IIP universal.

The avConnectFiles source method routine:
MTHROUTINE NAME(avConnectFiles) OPTIONS(*Redefine)
* ==> Define_map *input #std_obj #UserProfile
* ==> Define_map *input #vf_elnum #DftBlockSize
* ==> Define_map *input #vf_elnum #DftMaxRecSel

USE BUILTIN(CONNECT_FILE) WITH_ARGS('*' *SSERVER_SSN #DftBlockSize.Value
#DftMaxRecSel.Value)
* >>>> start of manually added source <<.
DEFINE FIELD(#dataset) TYPE(*CHAR) LENGTH(3) DESC('Name dataset')
DEF_LIST NAME(#WL_LIBL) FIELDS(#dataset) TYPE(*WORKING) ENTRYS(0000001)
* Read UDEF which is part of the X_RUN cmd
USE BUILTIN(GET_SESSION_VALUE) WITH_ARGS(UDEF) TO_GET(#DATASET #RETURNCD)
* call ALGLIBL
ADD_ENTRY TO_LIST(#WL_LIBL)
USE BUILTIN(CALL_SERVER_FUNCTION) WITH_ARGS(*SSERVE R_SSN ALGLIBL N N
#WL_LIBL) TO_GET(#returncd)
IF COND('#returncd *ne OK')
CHANGE FIELD(#msgdesc) TO('ALGLIBL ended abnormally, check report')
USE BUILTIN(message_box_add) WITH_ARGS(#MSGDESC)
USE BUILTIN(message_box_show) WITH_ARGS(*Default *Default ERROR ALGLIBL)
ABORT
ENDIF
* >>>> end of manually added source <<.
ENDROUTINE

This is the source of the ALGLIBL function on the iSeries:
FUNCTION OPTIONS(*NOMESSAGES *DEFERWRITE *DIRECT) RCV_LIST(#WL_LIBL)
* Program interface
DEFINE FIELD(#DATASET) TYPE(*CHAR) LENGTH(3) DESC('Name dataset')
DEF_LIST NAME(#WL_LIBL) FIELDS(#DATASET) TYPE(*WORKING) ENTRYS(0000001)
* Workfields
DEFINE FIELD(#CMD) TYPE(*CHAR) LENGTH(80)
DEFINE FIELD(#CMD2) TYPE(*CHAR) LENGTH(80)
* Get the name from dataset
GET_ENTRY NUMBER(1) FROM_LIST(#WL_LIBL)
IF COND('#io$sts *eq OK')
* built cmd, syntax:
* CALL PGM(*LIBL/ALGLIBL) PARM(&DATASET &PARTITIE)
IF COND('#dataset *eq *blanks')
USE BUILTIN(CONCAT) WITH_ARGS('CALL PGM(*LIBL/ALGLIBL) PARM(' *QUOTE ' ' *QUOTE)
TO_GET(#CMD)
USE BUILTIN(CONCAT) WITH_ARGS(*QUOTE *PARTITION *QUOTE ')') TO_GET(#CMD2)
USE BUILTIN(BCONCAT) WITH_ARGS(#CMD #CMD2) TO_GET(#CMD)
ELSE
USE BUILTIN(CONCAT) WITH_ARGS('CALL PGM(*LIBL/ALGLIBL) PARM(' #DATASET ' '
*PARTITION ')') TO_GET(#CMD)
ENDIF

LANSA Newsletter September 2006 page 24
© LANSA 2006

* Call of CL program ALGLIBL
EXEC_OS400 COMMAND(#CMD) IF_ERROR(ERR)
GOTO LABEL(END)
* When error: print #CMD and Abort
ERR: DEF_LINE NAME(#PRT) FIELDS(#CMD) IDENTIFY(*NOID)
PRINT LINE(#PRT)
ABORT MSGTXT('ALGLIBL ended abnormally, check report')
ELSE
ABORT MSGTXT('Incorrect call of CL program ALGLIBL. No entries in Interface')
ENDIF
* Exit
END: RETURN

Finally you need a CL application called ALGLIBL to handle the setting of the librarylist (not
part of this newsletter).

LANSA Newsletter September 2006 page 25
© LANSA 2006

RRNO on Logicals

In CU3 (LANSA version 11.3) the setting for logical files getting an rrno field was intended
behaviour. This was implemented due to requests from customers who suggested that this
would improve performance.

So, essentially, we have turned on CREATE_RRNO_INDEXES=YES (in x_dbmenv.dat) for
all databases in V11.0.

If required this can be reversed by setting CREATE_RRNO_INDEXES=NO in
x_dbmenv.dat.

This feature is supposed to improve performance of SELECT/FETCH and
DELETE/UPDATE WITH_KEY/WHERE, as building up the result set is faster.

However, additional indexes slow down INSERT, UPDATE, DELETE too, as indexes have to
be updated.

LANSA Newsletter September 2006 page 26
© LANSA 2006

Open Query File not in
RDMLX

Using OPNQRYF is not supported in RDMLX objects. Although this has not been properly
documented in the guides, this is not supported with RDMLX anymore.

This is logged as CCSID 125953 to modify the documentation where necessary to reflect
this unavailability.

The option and in fact better solution, is to use the SELECT_SQL command as this has
been improved and in fact now works better than the OPNQRYF option.

Instead of using the %XLATE option as in the SET example SET183A,
you can use one of these three functions: UPPER, UCASE or TRANSLATE function.

SELECT_SQL * FROM IKNDTA06/pslmst WHERE (UPPER(ADDRESS1) LIKE
UPPER('%STREET%'))

or
SELECT_SQL * FROM IKNDTA06/pslmst WHERE (UCASE(ADDRESS1) LIKE
UCASE('%STREET%'))

or
SELECT_SQL * FROM IKNDTA06/pslmst WHERE (TRANSLATE(ADDRESS1) LIKE
TRANSLATE('%AVENUE%'))

This should achieve the same functionality as for the %XLATE with the OPNQRYF
command.

